Code: CS4T1

II B.Tech - II Semester - Regular Examinations - May 2016

COMPILER DESIGN (COMPUTER SCIENCE AND ENGINEERING)

Duration: 3 hours Max. Marks: 70

PART - A

Answer *all* the questions. All questions carry equal marks 11x = 22 M

- 1. a) What is difference between pass and phase?
 - b) What is Lexical Analysis?
 - c) What is difference between compiler and interpreter?
 - d) What is Lex tool?
 - e) Define parse tree, give an example.
 - f) Give different types of LR Parsers.
 - g) Define Handle with example.
 - h) Explain Stack allocation.
 - i) What is the benefit of intermediate code generation?
 - j) Define strength reduction.
 - k) Explain Instruction Scheduling.

PART - B

Answer any *THREE* questions. All questions carry equal marks. $3 \times 16 = 48 \text{ M}$

2. a) What are the basic functions of language translator? 8 M

	b)	Explain, in detail, lexical analyzer generator.	8 M
3.	a)	What are the difficulties in top down parsing? Explain detail.	in 8 M
	b)	Consider the following grammar $S \rightarrow (L)/a$ $L \rightarrow L, /S$ Construct leftmost derivations and parse trees for the following sentences: i) $(a,(a,a))$ ii) $(a(a,a),(a,a))$	8 M
4.	a)	Define LR(k) parser. Draw and explain model of LR parser.	8 M
	b)	Write LR parsing algorithm.	8 M
5.	a)	Compare three different storage allocation strategies.	8 M
	b)	Translate the expression $-(a+b)*(c+d)+(a+b+c)$ into quadruple, triple and indirect triple.	8 M
6.	a)	Explain any two machine dependent code optimization techniques.	8 M

8 M

b) What is a DAG? Explain its application.